Search results

Search for "metal oxide nanoparticles" in Full Text gives 41 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • better anti-aging properties than natural curcumin. By encapsulating curcumin in nanocarriers or by conjugating it to metal oxide nanoparticles, the solubility and bioavailability of curcumin have been substantially improved, leading to a rise in its pharmacological efficiency [136][137][138][139
PDF
Album
Review
Published 12 Apr 2024
Graphical Abstract
  • studies have demonstrated that metal oxide nanoparticles (MeOx NPs) are toxic and tend to have adverse effects on living organisms and the environment [2][3][4][5][6]. The toxicity of NPs depends on various structural (intrinsic) [7] and extrinsic properties. Depending on the dispersing environment
  • structural diversity of metal oxide nanoparticles (MeOx NPs) poses significant challenges in determining their toxic effect on living cells [14][15]. Works related to nanoscale toxicity modeling have been published [16][17][18][19][20] to predict the toxicity profile of MeOx NPs on various cell lines and
  • NPs and its influence on toxicity. Methods and Materials Dataset The study is based on two datasets, that is, dataset I (zeta potential) and dataset II (cell membrane damage). Dataset I consists of 18 metal oxide nanoparticles (MeOx NPs) with stoichiometries of MO, MO2, MO3, M2O3, and M3O4. This data
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • , drugs, metal nanoparticles, metal oxide nanoparticles, carbon nanotubes, or biomolecules. This is a very important advantage that opens ways of designing composite hydrogels with various properties and applications such as biomedical [8][9][10], biosensors [11][12][13], wearable electronics [14][15][16
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • refrigeration compressors are metal oxides and carbon-based nanoparticles [11][12]. It is emphasized that both kinds of nanoparticles have positive effects on system performance. Krishnan et al. [13]. examined the effects of addition of metal oxide nanoparticles of Al2O3, SiO2, ZrO2, and carbon-based
PDF
Album
Full Research Paper
Published 02 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. Transition metal chalcogenides are another class of photothermal nanomaterials that exhibit strong NIR absorption, good photostability, and low toxicity. The architectonics of these nanomaterials also plays an important role regarding the PCE. Among the different types of transition metal oxide nanoparticles
PDF
Album
Review
Published 04 Oct 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • attention due to their widespread applications in different areas, and they are continually designed to yield certain desired properties [1]. With the uninterrupted development of new NPs, engineered nanoparticles in the form of metal oxide nanoparticles are becoming a new area of research. Metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • structures. The authors thank Marsha Ensor for her contribution. This report is based on the following: Hancock, M. L. The Fabrication and Characterization of Metal Oxide Nanoparticles Employed in Environmental Toxicity and Polymeric Nanocomposite Applications. Doctoral Dissertation, University of Kentucky
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • of a distinct linker, and the creation of MOF composites with other conducting materials (carbon-based, metal, and mixed metal oxide nanoparticles) are just a few experimental strategies that have been suggested to further improve the electronic properties of MOFs. Luminescence properties: The fact
PDF
Album
Review
Published 01 Jun 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • semiconductor metal oxide nanoparticles exhibit the spill-over effect, which alters the plasmonic absorption and spectral width of the plasmonic nanoparticles integrated in dielectric matrices. This spill-over effect, however, decreases with a decrease in electron density. For nanoparticles with low electron
PDF
Album
Review
Published 27 Mar 2023

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • , Karachi, Pakistan University of Hertfordshire, School of Engineering and Technology, Hatfield, UK Changzhou University, School of Materials Science and Engineering, Changzhou Science Town, Changzhou, P. R. China 10.3762/bjnano.13.54 Abstract The addition of metal oxide nanoparticles to fluids has been
  • ., alkane) the thermal conductivity was increased three times (from 0.1 to 0.4 W·m−1·K−1). This approach to determine the thermal conductivity of metal oxide nanoparticles in aqueous and nonaqueous fluids using visual molecular dynamics and interactive autocorrelations demonstrate a great tool to quantify
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • oxide nanoparticles [28]. Numerous indispensable parameters including surface tension, polarity, viscosity, and hydrogen bonding have an important influence on the reactivity of species. Also, the formation of nanostructures is governed by the mass transport properties of the DES components. It is also
  • the principles of green chemistry. Despite extensive studies for more than a decade, DESs as solvents for nanomaterial synthesis yet awaits exploration regarding biological applications. In an interesting recently published work, a natural deep eutectic solvent (NADES) has been used to extract metal
PDF
Album
Review
Published 18 Aug 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification
  • microorganisms, showing larger inhibition zones against Gram-negative bacteria (E. coli and P. aeruginosa) when compared to Gram-positive bacteria (B. subtilis and S. aureus) [94]. Types of metal-based antimicrobial nanoparticles Metallic and metal-oxide nanoparticles Since ancient times, metal-based materials
  • and 500 µg/mL, respectively) [106]. Kolb et al. (2016) used the atmospheric pressure jet plasma method to deposit Cu NPs over acrylonitrile butadiene styrene substrates, generating potential antibacterial surfaces against S. aureus [104]. On the other hand, metal oxide nanoparticles are inorganic
PDF
Album
Review
Published 25 Sep 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • sol–gel process, yielding metal-oxide nanoparticles dispersed in a mesoporous matrix. [5]. Other methods used for synthesising these nanoparticles include modifications of the sol–gel method. These methods involve supercritical conditions, such as ethyl alcohol and alkaline co-precipitation, and an
PDF
Album
Full Research Paper
Published 12 Aug 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • materials, nanoscale metal chalcogenides (Cu2−xE, E = S, Se, Te), transition metal dichalcogenide nanostructures (e.g., WS2, MoS2), metal-oxide nanoparticles (e.g., WO3), and nanoscale coordination compounds (e.g., Prussian blue nanoparticles) [33][36][37][38]. The photothermal properties of these
PDF
Album
Review
Published 31 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • growth promoter. Typically, a mixture of activated metal (100 mg), sulfur powder (25 mg) and g-C3N4 (50 mg) were added to a Teflon beaker and irradiated with microwaves. It is important to note that in the absence of carbon (graphite/g-C3N4), the arc synthesis yielded a mixture of metal and metal oxide
  • nanoparticles and the particle sizes were found to be difficult to control. In Figure 2a, we show a schematic of a reaction vessel inside a microwave device. Figure 2b shows the optical image of plasma generated in the reaction vessel during microwave irradiation. Microwave irradiation of activated metals mixed
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • characteristics, such as high surface area, good thermal stability, and excellent mechanical properties [32][33]. CNFs loaded with metal oxide nanoparticles have attracted a great deal of attention regarding the photocatalytic purification of water. He et al. [34] fabricated porous graphene/TiO2 CNFs by
PDF
Album
Full Research Paper
Published 15 Apr 2020

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • removal of pollutants from water, for instance dyes [31] and, As(III) and As(V) species [34]. Moreover, they could be used as precursors for supported metal-oxide nanoparticles that could be of interest in catalysis [31]. MgAl-LDH/sepiolite nanoarchitectures have been also satisfactorily tested as
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • of functional nanoarchitectures. Within this scope, clays can be of special relevance in the production of photoactive materials as they offer an advantageous way for the stabilization and immobilization of diverse metal-oxide nanoparticles. The controlled assembly under mild conditions of titanium
  • -oxide nanoparticles, leading to a loss of the stacking order in the silicate layers due to the assembly with ZnO NPs [118]. The protocol schematized in Figure 3A, a very convenient pathway to produce functional nanoarchitectures by using alkylammonium-exchanged layered clays, has been applied to produce
  • , taking place during the heterocoagulation of hydrolyzed alkoxides previously incorporated in the surfactant–clay interface, as it was first reported by Letaïef and Ruiz-Hitzky [126][127]. In the same way, organoclays dispersed in an organic solvent can facilitate the incorporation of already formed metal
PDF
Album
Review
Published 31 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • , we attempted to obtain an additional enhancement effect of metal-oxide nanoparticles without the need for further processing steps. A coating with carbonaceous thin films was obtained coating by sublimation, deposition, and pyrolysis of tin(II) phthalocyanine (SnPc) on a carbon fiber surface in a
  • , although the enhancement of the former was limited. It has been recognized that the modification of the carbon fiber surface by metal oxide nanoparticles also enhances the redox reactions [16][17][18]. In this study, we attempted the combination of the effects of edge-plane exposure and loading with metal
  • overpotential and a stable cycling performance. A facile and efficient technique based on the nanoscale processing of the carbon fiber surface was presented to substantially enhance the activity for the redox reactions in redox flow batteries. Keywords: carbon fiber; electrode reactions; metal-oxide
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • density of 45.83 Wh kg−1 at a power density of 1.27 kW kg−1 was also realized. The developed electrode material provides new insight into ways to enhance the electrochemical properties of solid-state supercapacitors, based on the synergistic effect of porous carbon nanofibers, metal and metal oxide
  • nanoparticles, which together open up new opportunities for energy storage and conversion applications. Keywords: composite; electrochemical performance; porous carbon nanofiber; solid-state hybrid supercapacitor; supercapacitor; TiO2 nanoparticles; Introduction To meet the rapidly growing demand for energy
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • functionalized by introducing reactive groups onto their sidewalls, such as carboxylic acid [12][13], hydroxy [14] or carbonyl [15] groups, by decorating them with metal or metal oxide nanoparticles [10][16][17][18][19], or by creating CNT–polymer [20] or CNT–chalcogenide [21] hybrids. Employing these approaches
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores

  • Kartheek Katta,
  • Dmitry Busko,
  • Yuri Avlasevich,
  • Katharina Landfester,
  • Stanislav Baluschev and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2019, 10, 522–530, doi:10.3762/bjnano.10.53

Graphical Abstract
  • analogous one in argon atmosphere. Results and Discussion The objective of this work was to design colloidally stable polystyrene-based hybrid nanocapsules containing the fluorescent dye terrylene diimide (TDI) and being armored with metal-oxide nanoparticles on the polymer shell surface. Polymeric
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • tailoring the selectivity of CNTs towards target gases, one of the simplest consists of decorating the outer wall of CNTs with metal or metal oxide nanoparticles [6][7][8][9]. In some cases, metal or metal oxide nanoparticles show interesting catalytic properties for the decomposition of target molecules
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • wastewater treatment due to its ease of recollection and recycling purpose, resulting in no photocatalyst residue in the reaction system. Moreover, metal oxide nanoparticles of smaller particle size and larger surface area can be expediently immobilized in the cellulose film to obtain a metal oxide
  • nanoparticles/cellulose nanocomposite. Photogenerated electrons and holes inside the metal oxide nanoparticles are able to migrate to the particle surface, while metal oxide nanoparticles within the nanocomposite film are also inclined to accelerate the interfacial charge carrier transfer and separation [130
PDF
Album
Review
Published 19 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018
Other Beilstein-Institut Open Science Activities